Code: CE1T1, ME1T1, CS1T1, IT1T1, EE1T1, EC1T1, AE1T1

I B. Tech - I Semester - Regular / Supplementary Examinations November 2018

ENGINEERING MATHEMATICS - I
 (Common for all Branches)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1.

a) If $\frac{d x}{d t}+\frac{x}{t \log t}=\frac{1}{t}$, then find the integrating factor.
b) Find the particular integral of $\left(D^{2}+1\right) y=\sin x$
c) State Newton's law of cooling.
d) State Rolle's theorem.
e) Expand e^{x} in powers of x second degree term.
f) Evaluate $\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{\infty} e^{-r^{2}} r d r d \theta$
g) Evaluate $\int_{0}^{1} \int_{y}^{1} e^{-x} d x d y$
h) State Stoke's theorem.
i) Find $\operatorname{div} \bar{F}$ if $\bar{F}=x y z \boldsymbol{i}+3 x^{2} y \boldsymbol{j}+\left(x z^{2}-y^{2} z\right) \boldsymbol{k}$ at point $(2,-1,1)$.
j) Show that $\beta(\mathrm{m}, \mathrm{n})=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} x \cos ^{2 n-1} x d x$
k) Write normal equations to fit a quadratic curve $y=a x^{2}+b x+c$

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Solve $\left(D^{2}+1\right) y=\sec x$ by method of parameters. 8 M
b) Show that the family of confocal and coaxial parabolas $y^{2}=4 a(x+a)$ where a is an arbitrary constant are self orthogonal.
3. a) In the plane triangle ABC , find the maximum value of $\cos A \cos B \cos C$
b) Verify Rolle's Theorem for the function $f(x)=\frac{x^{2}-4 x}{x+2}$ in $(0,4)$
4. a) Evaluate $\iint(x+y)^{2} d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
b) Evaluate the double integral $\int_{0}^{a} \int_{\sqrt{a x}}^{a} \frac{y^{2}}{\sqrt{y^{4}-a^{2} x^{2}}} d x d y$ by changing the order of integration.
5. a) Find the directional derivative of the function
$f(x, y, z)=x^{2}+y^{2}+2 z^{2}$ at the point $P(-1,2,3)$ in the direction of $4 i-2 j+k$.
b) Using Green's theorem, evaluate $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is a boundary of the region bounded by $y=\sqrt{ } x$ and $y=x^{2}$. 8 M
6. a) Define Beta function and gamma function and find the relation between them.
b) Fit a second degree polynomial for the data $(1,2),(2,5),(4,9),(6,10)$. 8 M
